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Abstract—The dispersion relation is evaluated numerically for Taylor waves in a viscous unstable interface
with surface tension. The solution takes account of transverse curvature and the numerical evaluations
apply to horizontal cylindrical, as well as to plane, interfaces. The result is verified with frequency and
wavelength data obtained during film boiling on horizontal wires. A very general empirical correlation is
given, en passant, for the vapor blankét thickness during film boiling.

NOMENCLATURE

A, A,B., B, undetermined constants (see

B,

equation (9) and context);

ratio of viscous to surface-tension
forces (see equation (28));

Bond number, R?;

dimensionless group defined on
abscissa of Fig. 7;

vapor specific heat at constant
volume;

depth of fluid layer;

gravitational acceleration;

latent heat of vaporization. Asterisk
denotes product of h, and a correc-
tion for sensible heat;
dimensionless wave number (see
equation (19));

wave number, 27t/4;

dimensionless liquid viscosity para-
meter (see equation (21));

JE + po/p);

pressure at liquid—vapor interface.
Subscript, 0, denotes pressure in
undisturbed interface;

heat flux;

radius of heater. Subscript denotes
radius of interface equal to R + d;
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R.R,

Re,

78
Ps
o,
®,

R and R, multiplied by

Voo, — p)/0];

a kind of Reynolds number defined
by equation (29);

time;

velocity components in x and y
directions;

coordinates parallel with, and nor-
mal to, undisturbed interface;

(p; = p)os + p,);

4R,

contribution of radial or transverse
curvature to the deviation of the
pressure in the vapor, from that
which exists when the interface is
undisturbed;

temperature  difference  between
heater and saturated liquid;
y-coordinate of interface;;

1/(/3)K);

wavelength. Subscript denotes 4 for
which the growth rate is maximum;
viscosity;

density;

surface tension;

potential function;

perturbation function;
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Q, dimensionless growth rate (see equa-
tion (18));
ONGIN I growth rate of a wave. If w is

imaginary it will be a cyclic fre-
quency, so @ is also called a “wave
frequency”. Subscript, d, denotes the
“most dangerous” frequency or maxi-
mum growth rate. Subscript, F,
denotes ¥, for a plane interface.

General subscripts

19 denote properties of liquid and vapor
regions, respectively;
x,y,t, denote partial differentiation with

respect to x, y and ¢, respectively.

INTRODUCTION

AN UNDERSTANDING of Taylor wave behavior is
important to a variety of physical processes.
These include film boiling heat transfer, pre-
dictions of the peak pool-boiling heat flux, the
clinging of liquids to the underside of solid
surfaces as might occur during film condensa-
tion, and so forth. While Taylor waves have
been treated for a variety of configurations in
inviscid liquids, we lack practical solutions for
the case in which the liquid is viscous.

G. L Taylor [1] first discussed the instability
of the horizontal interface between two ideal
incompressible fluids of infinite depth. Beliman
and Pennington [2] extended the problem by
showing how to account for the interfacial
surface tension and fluid viscosities. They gave
closed-form expressions for the dispersion rela-
tion in inviscid fluids. They were unable to
obtain a closed-form solution for the more
general problem in which both viscosity and
surface tension were considered, and they did
not consider curvature of the interface. Several
investigators have considered the plane viscous
interface subsequently, but usually with an eye
toward solving the dispersion relation analytic-
ally. This kind of work is typified by Willson’s
study [3] which extends previous efforts and
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presents less restrictive approximations than
his predecessors.

In 1963, both Lienhard and Wong [4] and
Lee [5] showed how to treat cases in which the
interface was a horizontal cylinder. Lienhard
and Sun [6] greatly expanded the experimental
verification of the inviscid prediction for this
configuration, and showed how the shape of the
dispersion relation determined the scatter of
wavelength data.

Our aim in this study is simply to solve the
dispersion relation numerically for Taylor waves
in viscous fluids including surface tension. We
shall do this for both horizontal-cylindrical and
plate interfaces. By going directly to numerical
solutions we shall avoid the sort of restrictions
(e.g. equal, or a weighted average of, viscosities
in both fluids) that have robbed analytical
studies of much usefulness. We shall also be able
to include the effects of surface tension, curva-
ture, and viscosity simultaneously.

Secondly, we aim to provide the first experi-
mental verification of the predicted viscous
effects in a system of practical importance.

The major restrictions of the present study
will be: (1) only Newtonian and incompressible
liquids will be considered, and (2) only 2-dimen-
sional waves will be analyzed. The latter assump-
tion will only be of concern in the plane interface
situation, and here there are two pieces of evi-
dence which support it: Squire [ 7] showed long
ago that 3-dimensional waves are generally
more stable than 2-dimensional waves in a
homogeneous viscous flow. More recently Sernas
[8] analyzed the Taylor instability of an in-
viscid plane interface and discovered that the
length of the individual superposed wave com-
ponents were longer and slower (i.e. they were
less instable as Squire’s results imply that they
should be). Interestingly, Sernas’ waves still
defined a square grid whose spacing was equal
to the two dimensional wavelength.

ANALYSIS
Figure 1a shows the idealized interface be-
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FiG. la. Interface between two incompressible viscous
fluids of infinite depth.

F1G. 1b. Schematic diagram of a typical configuration of
film boiling on cylinders.

tween gas or vapor, and liquid, regions of arbi-
trary depth. Figure 1b shows a typical physical
situation to which we shall subsequently show
that the analysis can be applied. We shall begin
by treating the plane interface, and will then
show how to account for tangential curvature in
the analysis. The 2-dimensional linearized equa-
tions governing the motion in either phase are:

ux+vy=0 (D

1 H“
u = — ;px -+ ;(uxx + uyy) 2

vt=—%py—g+%(vxx+vy,) 3
where x, y and ¢ are the coordinates parallel
and normal to the interface, and time, re-
spectively; u and v are the x and y velocity
components; and p, g and y, are the fluid density,
the gravity, and the fluid viscosity, respectively.
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These equations are satisfied by a potential
function, ¢, and a perturbation function, ¢, of
the form

u=-—9¢, -y, @)
v=—9,+¥y, ®)

and a pressure, p, at the interface equal to

P =Py — P9y + po, ©)

where p, is the pressure in the undisturbed inter-
face. The two functions ¢ and ¥ must satisfy the
relations

Pt @, =0 ™
and

g(wm +¥,) =¥, ®

Using subscripts f and g to designate the
liquid and gas phases, respectively, we assume
perturbation and potential functions of the form:

¥, =B e ™" sinkx
@, = A e % cos kx

¥,=B, et ot 5in kx

®

@, = A, % cos kx

where k is the wave number, w is the growth
rate, the A’s and B’s are undetermined constants,
and (in either phase)

m? = k% + po/p. (10)
The real part of m must be positive so the velocity
stays finite far above or below the interface.

Considering that waves of height y = n(x, t)
are propagated, we obtain for the linearized
kinematic condition at the interface:

amn

n,=v,
so

9 = &g—gﬁe‘"‘coskx.

(12



2100

The boundary conditions at the interface, i.e.
aty = n,are:

N
uf = ug
Uf = Ug
- pf + znuf(vf)y = - pg + 2yg(vy)y q (13)
— 0N,y “Aptr

w L), + w)] = wle), + @) |

Equations (13) are the same as used by Bell-
man and Pennington with the exception of the
4p,, term in the vertical force balance. This term
represents the effect of transverse surface tension
treated as an x-dependent contribution of an
increment of pressure. In the present study we
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Since we only need to treat the stability of that
portion of a cylindrical interface at the top, we
base 4p, on the transverse curvature on top.
Following the simple calculation made by
Lienhard and Wong, we assume that the cross-
section of the interface is always a circle centered
on the cylinder, with its lowest point lying on a
line located at y = — 2(R + d ). and we obtain:

dp,, = on/2R? (14)

where R_is the actual radius of the undisturbed
interface. For the film boiling situation, R_ is
equal to the heater radius, R, plus the vapor
depth,d.

The substitution of equations (9), equation (6)
for both phases, and equations (12) and (14)
in equations (13) gives four linear homogeneous
equationsin B, A, B and A :

kAf+mef*kAg+mng=0
Af+Bf+Ag—Bg=0

[g(p,—pgﬂc ok’ ok

——— — 2 r——
o w v 20k +2R3w]Af+[

e

— 3 k
dop=pk )k—i‘f‘-—zufkmﬁ———“ ]Bf
w w

15
2R’w (15)

+ [p,0 + 21 k*1 A, — [2ukm 1B, =0
2u kA, + pk* + mB, + 2uk*A — p(k* + m2)B, =0

The above equations have a non-trivial solution if and only if the determinant of the coefficient

matrix is zero, i.e.

k mf _k m.q
1 ! I -1
3 _ 3
glo, — p Yk ok® glop =Pk KN b 2 k) —2ukm |
) ) 9 ® ’ ? Y
—0 (16
21 k2 ok 2u km +_a£_ E "
R T “ T R |
|

2p,k? pk* + m7) 2p k2 —u(k* + m3)

Equation (16) should be valid only when the
fluid depths are infinite. During film boiling on
horizontal cylinders the depth of the vapor

shall restrict consideration to the film boiling
situation, and treat a horizontal gas cylinder
in a large liquid bath, as suggested by Fig. 1b.
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blanket is finite, as was indicated in Fig. 1b.
Recently, Hsieh [9] analyzed the inviscid in-
stability problem in the presence of heat and
mass transfer. His analysis also incorporated a
finite depth of fluids. In the published discussion
of his work as applied to film boiling, we showed
that there was no effect of finite vapor depth on
the “most susceptible” wavelength, while the
effect on the corresponding frequency was to
decrease it by only a very small amount.

The evaluation of the determinant (16) gives

ok
[— 9lo; — Pk + ok® — o5 + (o, + pg)wz]

Lk + mp) + p(k + m)]
+ 4cok[ufk +um] [ugk + ,ufm}.] =0. ({17

Our next step is to put (17) in a more usable
form, so that it can be solved explicitly for
frequency and wave number, or wavelength.
The vapor viscosity p, is much less than p so it
may be neglected in comparison to liquid
viscosity. Thus we may write, for the growth rate,
o= f(p, + ppp; — Pyl 0,k g, R) This ex-
pression relates eight quantities which are ex-
pressible in three dimensions. Using the
Buckingham Pi-Theorem, we can recast this
problem in terms of five dimensionless groups.
For these groups we choose:

(i) a dimensionless growth rate or “frequency”

2 = wlo/g’p, — p)I* (18)
(ii) a dimensionless wave number
K = k[o/glp, — p)I* (19)

or a dimensionless wavelength, A, defined as
A = 1/((/3)K) (20)
(i) a dimensionless liquid viscosity parameter
psot
ug*o, — o)
The square of this group is very nearly the
Borishanski number, N, which is well known in
boiling.
(iv) a dimensionless density
I'=(p,— pMp,+p,)

M= @1)

22
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(v} a non-dimensional cylinder radius

R, = R[g(p, — p,)/o]*. (23)
This number is related to the Bond number,
Bo, by Bo = R,
Using these dimensionless numbers, we obtain
the desired dispersion relation from equation
(17) in dimensionless form:

1—K?+ 12 + K
2Bo -TK ' (KZ + QM)
K? Q? 40K
(K* + QM) TI(K:+ QM MI
K 0. (24

t 2BoKZ + QM)

From (24) it is clear that when the wave growth
rate is zero, there is no effect of liquid viscosity
on the critial wavelength. Furthermore, when
M — oo (ie. the liquid is inviscid) equation (24)
reduces to Lienhard and Wong’s expression for
the inviscid case.

We are interested in the “most susceptible
frequency”, or the maximum growth rate, w,
of the disturbance (ie. the one for which
dQ/dK = 0). Differentiating (24) with respect to
K and setting d@2/dK = 0, gives a second equa-
tion for the dimensionless maximum growth
rate, Q. Thus we have two nonlinear equations,
each in two unknowns: Q and K, and @, and
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FiG. 3. Effect of viscosity on dispersion relation for a flat
plate.

K, The two equations were solved numerically
on an IBM/360 computer.

For the physical cases that we shall consider
subsequently, I' is approximately 0-9995, so we
have used this value in the calculations. We
might just as well have set I' = 1, however, since
I’ would have to be much farther from unity to
alter the computations noticeably.

Figures 2 and 3 show the effect of Bond
number and liquid viscosity separately on the
dispersion relation. Figure 2 shows that trans-
verse curvature of the cylindrical heater reduces
the “most susceptible” wavelength and increases
the frequency *at a particular value of M.
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Figure 3 shows that apart from increasing the
wavelength, viscosity also tends to increase the
region of near-neutral stability slightly. By
“region of near-neutral stability” we mean the
range of wavelengths that can exist within any
specified range of frequency close to the maxi-
mum frequency.

The “most susceptible frequency”, and corre-
sponding wavelength are plotted in Figs. 4 and
S, respectively, as a function of the viscosity
parameter M and Bond number, Bo. As evident
from these figures, the effect of liquid viscosity is
to increase the wavelength and to decrease the
corresponding frequency.

EXPERIMENTAL DETERMINATION OF VAPOR
BLANKET THICKNESS, WAVELENGTH, AND
GROWTH RATE

An experimental program was carried out to
observe the wavelength, its rate of growth, and
the thickness of the vapor blanket surrounding
the wire heater during film boiling in viscous
liquids. Since the viscosity of most of the liquids
is fairly low when they boil at normal pres-
sures, the experiments had to be performed at
very low pressures to display significant
viscous effects. Reagent-grade cyclohexanol,
CH,(CH,),CHOOH, was well suited for the
purpose and was used in nearly all the experi-
ments reported here. Complete information

»
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regarding the relevant physical properties of
cyclohexanol, as well as full details of the ex-
periment are given by Dhir [10].

The cylindrical test heaters were contained
in an insulated brass test capsule, 89 x 89 x 17-8
cm, with glass windows in the sides. An electric
preheater and 0-63 cm dia brass holders to
support the test heaters were fitted to the capsule.
Nichrome wires were used as test heaters and
connected to the holders through small copper
leads attached so as to minimize end effects. A
2:54 cm marker was mounted on the bottom of
the capsule to provide a reference dimension for
the reduction of photographic data.

Figure 6 shows a schematic diagram of the
apparatus. A.C. power was employed in most of

One-way valve

M for various Bond numbers.

the experiments. The power supply to the wire
was calculated from the measured current and
voltage in the wire. A mercury manometer or a
vacuum gage was used to note pressure inside
the capsule. This pressure was corrected to take
into account the head of liquid above the wire.
An identical apparatus was used by Lienhard
and Sun to make similar measurements and they
give full details of experimental procedure.
Nichrome wires, about 10 ¢m long, were
cleaned with soap and hot water to remove any
grease or oily matter and then rinsed with the
test liquid. The wire surfaces were smooth and
had a cold-rolled finish. The capsule was filled
with test liquid.to about 2-5 cm above the wire.
The vacuum pump was started and the preheater

Thermocouple type

vacuum gage Cock to

é control

7 vacuum

Thermometer Test Er =
I- heater - ;
Capsule wire ==
/_.& Mercury Cold trap ;‘3‘3‘3: Vacuum
= manometer pump
:@E -tﬂ[}}
Z *\l 1o v
1300 w 2:54cm ac.
Varige Preheater = marker supply
(A}
&/

Auto-~transformer

Fi16. 6. Schematic diagram of the apparatus.



2104

was used to heat the liquid to saturation tem-
perature. The preheater was turned off before
energizing the wire to avoid effects of convective
currents and electric fields.

The current in the wire was steadily increased
until the peak heat flux was reached and the
transition from nucleate to film boiling was ob-
served. Thereafter the current was reduced until
film boiling started to disappear at the ends.
This insured that the heat flux was close to
minimum. Still pictures of the filtm boiling
phenomenon were taken and observations of
the liquid temperature and pressure were also
made.

This procedure was repeated for wires of
different sizes and at various pressures. Each
time a new wire was used, the liquid in the
capsule was also replaced. In some cases high
speed movies were made to facilitate study of the
growth rate of the disturbance.

Photographic information was used to make
three different kinds of observations.

Wavelength measurements

Wavelengths were scaled from the still photo-
graphs. Care was taken to avoid situations
where the merging of adjacent bubbles occur. A
general deformation of the interface may be
caused by the propagation of such disturbances
along the wire, or local deformations may be
caused by oscillations generated when outgoing
bubbles separate from the interface. The prob-
able error in the measurements of the shortest
wavelengths was only about +4'5 per cent.
The error was less for larger wavelengths.

Vapor blanket thickness measurements

In film boiling, a vapor blanket of finite
thickness always surrounds the heater and
there is no liquid contact with the surface of the
heater. For the application of the theory devel-
oped in the previous section, we must obtain
the corrected radius of the heater wire by adding
the minimum blanket thickness,d ,to RtogetR.

To observe the vapor blanket thickness,
representative pictures of film boiling were
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enlarged. The minimum diameter of the vapor
blanket surrounding the wire was measured,
using the 2-54 c¢cm marker as a reference. The
wire diameter was subtracted from this measure-
ment to give twice the vapor blanket thickness.

Measurements of growth rate of disturbance

Hycam movies were viewed on a microfilm
viewer. Starting with a frame in which a bubble
had just broken away from the interface, the
height of the interface was measured from the
lowest boundary of the vapor blanket. Some-
times a cusp appeared on the blanket in the
wake of a departing bubble, and we have ig-
nored it. Later, the minimum diameter of the
vapor blanket tube surrounding the wire was
subtracted from each of the above observations
to give the amplitude of the wave.

The minimum height of the interface, dg, was
used as a reference dimension for obtaining
dimensioniess amplitude. Thus, at a particular
value of x, say x = (, one may write

T = exp () = exp{@tY[g%(p, — p)io]} (29)
[

but we can easily show that \/[g*(p, — p,)/a]
= 1612w, ,so0

d &*

In <d1) = (16120, 1)

g

(26)

where @, is the “most susceptible” frequency
(or growth rate) for the disturbance in the
inviscid fluid in the absence of any curvature of
the heater. In all cases the dimensionless ampli-
tude was plotted against dimensionless time,
w, t, on semi-logarithmic graph paper. The
slope of the curve at any instant gave the
dimensionless frequency, Q. The probable error
in the observation of the linear growth rate was
+ 10 per cent.

Now we would like to compare the experi-
mental observations of wavelength and fre-
quency with the theoretical predictions. How-
ever, before we can do this it is necessary to
present some sort of correlation for vapor
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blanket thickness, because the wire radius has
to be corrected for it.

VAPOR BLANKET THICKNESS CORRELATION

Baumeister and Hamill [11], while analyzing
heat transfer from wires in film boiling, developed
an expression for vapor blanket thickness. Their
theoretical model for the film boiling configura-
tion was a fairly approximate one; a sequence of
spherical domes connected by annular passages.
Neglecting inertia, they solved the equations of
motion and energy with the assumption that
the heat-transfer rate is maximum.

Their theoretical expressions for the vapor
blanket thickness and the heat transfer coefficient
can be combined to give

d +
-4 = exp {7-05 [ﬂg—]
R hfgp i

1 +
[1 + 9RY(1 + dq/R)z] } -

where g is the heat flux, &', is the latent heat, 9y
multiplied by a sensible heat correctlon
[1 + 034¢,AT/h, ]? and c, is the specific heat
at constant volume for the vapor. A comparison
of (27) with existing d, data showed that the

equation generally glves values that are too
high. Therefore we sought to take a new look
at the various factors influencing d,.
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The vapor blanket thickness will primarily
depend on seven additional independent vari-
ables, % Py fg, g(p ¢ = Pg) 0, i, and R. The heat
flux, g, is imagined to be transfgerred by conduc-
tion and used fully in the phase transformation.
The eight variables can be written in four
dimensions. Thus, in accordance with Bucking-
ham Pi-Theorem, we expect the problem to be
reducible to a relation among four dimension-
less groups. For these we choose:

(i) The dimensionless vapor blanket thick-
ness, 4 =d g/R

(ii) The Bond number, Bo

(iii) A ratio of viscous to surface tension forces,

_qu,
ho

gfy

B

{ll

(28)

(iv) A ratio of inertial to viscous forces—a
kind of Reynolds number based on the

vapor velocity,
RA
Re= f’?—. (29)
Hy fq

Baumeister and Hamill’s equation involved
the first three groups but the fourth group was
missing because they neglected inertial terms in
their equation of motion. Their assumption was
realistic as long as either the wire radius, or the
heat flux, or the vapor blanket thickness is
small; but the ratio of inertial to viscous forces

LR AR

exp[46¢C
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Fic. 7. Correlation for vapor blanket thickness.
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might be of the order of magnitude of unity
when the heat flux is high or the vapor blanket
thickness is large.

In Fig. 7, we have plotted 20 data points for
vapor blanket thickness on wires in the range
0-11 € R' € 065 during the film boiling of
acetone and cyclohexanol. While the abscissa
is the same as Baumeister and Hamill’s, the
vapor blanket thickness has been correlated
with the Reynolds number as an additional
parameter. This correction has been obtained
by a trial and error procedure and no theoretical
reason is offered for taking the exponent in the
inertia correction term to be 2/3. In forming the
vapor blanket thickness correlation, all of the
vapor properties have been ecvaluated at the
mean film temperature and all radiant heat flux
is assumed to generate vapor. The raw data are
given by Dhir [10].

The group, gRA/u i , varied approximately
from 0-2 to 2°5 in all the observations. Smaller
values of this group usually occur near the left
hand side of the figure. The data scatter repre-
sents minimum and maximum measurements of
vapor blanket thickness. The accuracy of these
measurements is + 10 per cent. The data are
correlated well by the solid line whose governing
equation is:

El E
qu 1 ] }
4-60| Lo, : 1
4 { [pg quo} [1 +9R i(l + 4)?
[+ o]
ughfg

COMPARISON OF WAVELENGTH PREDICTIONS
WITH EXPERIMENT

Observed wavelengths for cyclohexanol boil-
ing at a temperature of 302:5°K, corresponding
to a pressure of 0-296 kPa, are displayed in
Fig. 8 The value of the liquid viscosity para-
meter, M, is close to 5. The theoretical prediction
for the viscous and inviscid cases is also shown
in the figure. The wire radius has been corrected
to R, to take into account the thickness of the
vapor blanket surrounding it. The raw wave-
length data are given by Dhir.
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FiG. 8. Wavelengths on horizontal cylinders.

Although wavelengths were measured for
various heat fluxes, those displayed in Fig. 8
correspond to the lowest heat flux. This is done
to avoid the longer wavelengths which may, as
we will see shortly, be favored at higher heat
fluxes. The data show a wide variability, but
the lowest points in the range of the data scatter
do embrace the theoretical prediction which
takes the dominant wavelength to be the “most
susceptible” one. The inviscid predictions would
have suggested wavelengths about 28 per cent
too short.

Figure 9 shows photographs of film boiling
for two of the data points in Fig. 8. Although
there is slight phase difference across the length
of the wire, the Taylor wave is very well devel-
oped. The bubble release pattern is good. The

b S S R B

10 b— Cyclohexanat, M =16
< Iﬁonge of observed
< wavelengths
§o8— I [ —
s e
% [ // - ]
g 06— - .
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Dimensioniess radius, .

FiG. 10. Wavelengths on horizontal cylinders.
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Frc. 9. Film boiling of cyclohexanol. M = 5-4.
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process is slower and viscosity seems to have
dampened the small interfacial disturbances
which may be observed in less viscous liquids.

Wavelength data for M = 16 are plotted in
Fig. 10. Here the absolute pressure is 1-06 kPa
and the saturation temperature is 329°K. In
this case, observed wavelengths are higher and
the data again show wide variability. This
variability in data can be explained from the
dispersion relation shown in Fig. 2. Near the
maximum frequency there is a wide region of
near-neutral stability. Thus, for frequencies
slightly less than the maximum, a large range
of wavelengths close to 4, is possible.
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Fi1G. 11. Growth of waves on a 0-51 mm dia wire heater in
cyclohexanol. P — 1-06k Pa, g = 0-86 X 10° W/m?, f, = 20
bubble/s, w, = 455 Hz, R = 0-14, R’ = 0-22,

COMPARISON OF WAVE GROWTH RATE

PREDICTIONS WITH EXPERIMENT
Figure 11 shows plots of dimensionless wave
amplitude vs time on semi-logarithmic coordi-
nates for a typical value of R'. The liquid viscosity
parameter, M, is 16, The data are for two ran-
domly-picked, regularly-growing waves during

5-10 s of motion pictures of film boiling.
This figure and many others like it reveal that

2107

5'ollllllllllllll
‘Q'a _____
a 40— §
o i
e i
@& 30k 1
= 1
o
: |
=
a 20— | 0,%,0; Observations for three
k] t different waves.
& ]
2 { Uncertointy is ~10%
H or i for & and =5% for A
{
E
Eosiillrliiflxii
0 Ac Ad 05 10 15

Dimensionless wavelength, A
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bubbles grow linearly during the first 12 per cent
or so of growth. This is the period during which
we would expect our linearized theoretical pre-
dictions of the frequency to be valid. We note
that the bubble grows in height to about 78 per
cent of the wavelength before it leaves the inter-
face.

In Figs. 12-14, we trace the dispersion rela-
tions for three dimensionless corrected radii
and M = 16, and we display the experimental
points obtained as in Fig. 11 on them. The
relation between wavelength and frequency is
borne out well in each case. It is clear that
wavelengths with frequencies slightly less than
the “most susceptible” frequency can easily
occur. In Fig. 15, observed frequencies are plotted
as a function of R/ along with the viscous and
inviscid (M — o0) predictions. The data fall
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FiG. 16. Experimental observation of frequency of dominant
wavelength on cylinders.
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slightly below the viscous predictions, but the
inviscid theory would have predicted still higher
frequencies.

The growth rates for some values of M in
excess of 50 are compared with the inviscid limit
in Fig. 16. The comparison is very satisfactory.
That the growth rates do not exceed the maxi-
mum possible value of Q is encouraging, since
we have already seen that Q should be equal to
or slightly less than its maximum value.

CONCLUSIONS

(A) Complete numerical evaluations of the
dispersion relation have been made for both
plane and cylindrical, Taylor-unstable inter-
faces, considering both surface tension and fluid
viscosity.

(B) An increase of wavelength with the liquid
viscosity has been measured and found to com-
pare well with the theoretical predictions. How-
ever, the dispersion relation permits some
variability of the wavelength around the value
for which the growth rate is maximum, with
longer wavelengths favored. Thus some meas-
ured wavelengths exceed the “most dangerous”
one.

{C) The wavelength and frequency (or growth
rate) measurements are faithful to the predicted
dispersion relation.

(D) A correlation for the vapor blanket thick-
ness around a cylindrical heater has been
established.
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STABILITE DE TAYLOR POUR DES FLUIDES VISQUEUX ET APPLICATION
A L’EBULLITION EN FILM

Résamé—On a évalué numériquement la relation de dispersion pour des ondes de Taylor & un interface

visqueux instable avec tension superficielle. La solution tient compte de la courbure transversale et les

évaluations numériques s’appliquent aux interfaces aussi bien en forme de cylindre horizontal que de plan.

Le résultat est vérifié par des mesures de fréquence et de longueur d’onde faites au cours de 1’ébullition

en film sur des fils horizontaux. On donne une relation empirique trés générale, pour I'épaisseur de la
gaine de vapeur pendant I’ébullition en film.

DIE TAYLOR-STABILITAT VON ZAHEN FLUSSIGKEITEN MIT ANWENDUNG AUF
DAS FILMSIEDEN.

Zusammenfassung—Die Ausbreitungsbeziehung fiir Taylor-Wellen mit Oberflichenspannung an einer

instabilen Grenzschicht wurde numerisch gelost. Die Losung beriicksichtigt eine Kritmmung in Querrich-

tung und die numerischen Ergebnisse passen fiir horizontale, zylindrische, sowie fiir ebene Grenzflichen.

Das Ergebnis wurde bestiitigt mit Frequenz- und Wellenlingenwerten aus Filmsiedemessungen an

horizontalen Drahten. Eine schr allgemeine empirische Beziehung wird angegeben zur Bestimmung der
Dampfschichtdicke beim Filmsieden.

TEMJIOPOBCKAA VCTONYMBOCTD NPH IJIEHOUHOM KUNEHUM BABKHX
RUTKROCTEN

Aunotanus—IIpoBORUTCA YMCIEHHHR pacdeT AMCHEPCHMOHHOrO CoOTHomeHWsA xas Telimo-

POBCKMX BOJH B HECTAJMOHADHON BASBKON NOBEDXHOCTH pAasjela C MOBEPXHOCTHHIM

HaTAxenHeM. PelleHne yYNTHBAeT MOMEPEYHYI KPUBHSHY, M YHCICHHHE OLEHKHM MOryT

HCIIOMB3OBATLCA LA TOPHBOHTANBHNX UMTMHAPHYECKNX U NIOCKKX NOBepXHOCTeM paspgera.

Pesynbratsl CpPaBHMBAIOTCA C MBMEPEHHHIMM BHAYEHMAMH YACTOTH M JIMHH BOJHH NpH

NEHOYHOM KUNEHHH HA FOPUBOHTAALHEIX NpoBosioxax. IIpuBogurca BechMa ofmee BMIHpPH-
“eCKoe COOTHOUICHME JJIA TOJIIUHH CIOfA Hapa NMpH MeHOYHOM HKHNEHUH,



