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Abstract-The dispersion relation is evaluated numerically for Taylor waves in a viscous unstable interface 
with surface tension. The solution takes account of transverse curvature and the numerical evaluations 
apply to horizontal cylindrical, as well as to plane, interfaces. The result is verified with frequency and 
wavelength dam obtained during film boiling on horizontal wires. A very general empirical correlation is 
given, en passant, for the vapor blanket thickness during film boiling. 

NOMENCLATURE 

A,, Ag’ B,T Bg’ undetermined constants (see 
equation (9) and context); 

4 ratio of viscous to surface-tension 
forces (see equation (28)); 

Bc, Bond number, RLz ; 

C, dimensionless group defined on 
abscissa of Fig. 7; 

c 0’ vapor specific heat at constant 
volume; 

d, depth of fluid layer; 

9, gravitational acceleration; 
h,.,, hTB, latent heat of vaporization. Asterisk 

denotes product of hsg and a correc- 
tion for sensible heat; 
dimensionless wave number (see 
equation (19)); 
wave number, 242; 
dimensionless liquid viscosity para- 
meter (see equation (21)); 

J(k2 + W/P); 
pressure at liquid-vapor interface. 
Subscript, 0, denotes pressure in 
undisturbed interface; 
heat flux; 
radius of heater. Subscript denotes 
radius of interface equal to R + de; 

%?(Yrd P ii* 

multiplied by 

a kindJof Riynoids number defined 
by equation (29); 
time ; 
velocity components in x and y 
directions; 
coordinates parallel with, and nor- 
mal to, undisturbed interface; 

(P J - P,)/(PJ + Pg); 

$,lK 

contribution of radial or transverse 
curvature to the deviation of the 
pressure in the vapor, from that 
which exists when the interface is 
undisturbed; 
temperature difference between 
heater and saturated liquid; 
y-coordinate of interface; 

l/((J3)K); 
wavelength. Subscript denotes 1 for 
which the growth rate is maximum; 
viscosity; 
density; 
surface tension; 
potential function; 
perturbation function; 
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0, dimensionless growth rate (see equa- 
tion (18)); 

0, Od’ @J&I growth rate of a wave. If w is 
imaginary it will be a cyclic fre- 
quency, so 0 is also called a “wave 
frequency”. Subscript, d, denotes the 
“most dangerous" frequency or maxi- 
mum growth rate. Subscript, F, 
denotes #* for a plane interface. 

General subscripts 

.A& denote properties of liquid and vapor 
regions, respectively; 

x, Y, t, denote partial differentiation with 
respect to x, y and t, respectively. 

INTRODUCTION 

AN UNDERSTANDING Of Taylor wave behavior iS 

important to a variety of physical processes. 
These include film boiling heat transfer, pre- 
dictions of the peak pool-boiling heat flux, the 
clinging of liquids to the underside of solid 
surfaces as might occur during film condensa- 
tion, and so forth. While Taylor waves have 
been treated for a variety of con~gurations in 
inviscid liquids, we lack practical solutions for 
the case in which the liquid is viscous. 

G. I. Taylor [l] first discussed the instability 
of the horizontal interface between two ideal 
incompressible fluids of infinite depth. Bellman 
and Pennington [2] extended the problem by 
showing how to account for the interfacial 
surface tension and fluid viscosities. They gave 
closed-form expressions for the dispersion rela- 
tion in inviscid fluids. They were unable to 
obtain a closed-form solution for the more 
general problem in which both viscosity and 
surface tension were considered, and they did 
not consider curvature of the interface. Several 
investigators have considered the plane viscous 
interface subsequently, but usually with an eye 
toward solving the dispersion relation analytic- 
ally. This kind of work is typified by Willson’s 
study [3] which extends previous efforts and 

presents less restrictive approximations than 
his predecessors. 

In 1963, both Lienhard and Wong [4] and 
Lee [S] showed how to treat cases in which the 
interface was a horizontal cylinder. Lienhard 
and Sun [6] greatly expanded the experimental 
verification of the inviscid prediction for this 
configuration, and showed how the shape of the 
dispersion relation determined the scatter of 
wavelength data. 

Our aim in this study is simply to solve the 
dispersion relation numerically for Taylor waves 
in viscous fluids including surface tension. We 
shall do this for both horizontal-cylindrical and 
plate interfaces. By going directly to numerical 
solutions we shall avoid the sort of restrictions 
(e.g. equal, or a weighted average of, viscosities 
in both fluids) that have robbed analytical 
studies of much usefulness. We shall also be able 
to include the effects of surface tension, curva- 
ture, and viscosity simultaneously. 

Secondly, we aim to provide the first experi- 
mental verification of the predicted viscous 
effects in a system of practical importance. 

The major restrictions of the present study 
will be: (3) only Newtonian and incompressible 
liquids will be considered, and (2) only 2-dimen- 
sional waves will be analyzed. The latter assump- 
tion will only be of concern in the plane interface 
situation, and here there are two pieces of evi- 
dence which support it: Squire [7] showed long 
ago that 3-dimensional waves are generally 
more stable than 2-dimensional waves in a 
homogeneous viscous flow. More recently Sernas 
[S] analyzed the Taylor instability of an in- 
viscid plane interface and discovered that the 
length of the individual superposed wave com- 
ponents were longer and slower (i.e. they were 
less instable as Squire’s results imply that they 
should be). Interestingly, Sernas’ waves still 
defined a square grid whose spacing was equal 
to the two dimensional wavelength. 

ANALYSIS 

Figure la shows the idealized interface be- 
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FIG. la. Interface between two incompressible viscous 
fluids of infinite depth. 
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FIG. lb. Schematic diagram of a typical co~~~ratioo of 
film boiling on cylinders. 

tween gas or vapor, and liquid, regions of arbi- 
trary depth. Figure lb shows a typical physical 
situation to which we shall subsequently show 
that the analysis can be applied. We shall begin 
by treating the plane interface, and will then 
show how to account for tangential curvature in 
the analysis. The 2-dimensional linearized equa- 
tions governing the motion in either phase are; 

(2) 

where x, y and t are the coordinates parallel 
and normal to the interface, and time, re- 
spectively; ZA and tr are the x and y velocity 
components; and p, g and P, are the fluid density, 
the gravity, and the fluid viscosity, respectively. 

These equations are satisfied by a potential 
function, 60, and a perturbation function, $, of 
the form 

@ = - qD* - $y (4) 

fJ= -(P,+$, (5) 

and a pressure, P, at the interface equal to 

P = PO - PCIY + Pcpt (6) 

where p. is the pressure in the undisturbed inter- 
face. The two functions tp and Ifi must satisfy the 
relations 

pp,, + cp, = 0 (7) 

and 

Using subscripts f and g to designate the 
liquid and gas phases, respectively, we assume 
perturbation and potential functions of the form: 

$1 
= Bf e-nrfy+ror sin h 

(a, = +e --ky+Lrrr cos kx 

$f, = BB emsy+ cot sin kx 

cp, = A, eky”cot cos kx ~ 

(9) 

where k is the wave number, w is the growth 
rate, the A’s and B’s are undetermined constants, 
and (in either phase) 

m2 = k2 + pcolfl. WI 

The real part of m must be positive so the velocity 
stays finite far above or below the interface. 

Considering that waves of height y = &x, t) 
are propagated, we obtain for the linearized 
kinematic condition at the interface: 
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The boundary conditions at the interface, i.e. 
aty = q,are: 

Uf = ug 

v/. = vg 

- Pf + 2Pf(Ql = - P, + 2pLg(vg)y (13) 

- oylxx - AP,, 

MVf)X + (q?l = Pgc(~g)x + (u&l 

Equations (13) are the same as used by Bell- 
man and Pennington with the exception of the 
Ap,, term in the vertical force balance. This term 
represents the effect of transverse surface tension 
treated as an x-dependent contribution of an 
increment of pressure. In the present study we 

H. LIENHARD 

Since we only need to treat the stability of that 
portion of a cylindrical interface at the top, we 
base Apt* on the transverse curvature on top. 
Following the simple calculation made by 
Lienhard and Wong, we assume that the cross- 
section of the interface is always a circle centered 
on the cylinder, with its lowest point lying on a 
line located at y = - 2(R + d,). and we obtain: 

AP,~ = or1/2R: (14) 

where R, is the actual radius of the undisturbed 
interface. For the film boiling situation, Rc is 
equal to the heater radius. R, plus the vapor 
depth, dg. 

The substitution of equations (9), equation (6) 
for both phases, and equations (12) and (14) 
in equations (13) gives four linear homogeneous 
equations in B,, A,, Bg and A : 9 

kA, + mSBf - kAg + mgBg = 0 

A, + B, + Ag - Bg = 0 

dp, - pg)k ok3 
0 

---p,w-2p,k’+& 
c 

gb, - pg )k ak3 
0 

---2p,kmi+& 
0 c 

+ b,o + 2/igk2] Ag - [@,km,]B, = 0 

2pfk2A, + pf(k2 + m:)Bf + 2pgk2Ag - pg(k2 + mi)Bg = 0 

The above equations have a non-trivial solution if and only if the determinant of the coefficient 
matrix is zero, i.e. 

k 

1 

mf -k m B 

1 1 -1 ~ 

2pqk2 --p&k’ + rni) 1 

shall restrict consideration to the film boiling Equation (16) should be valid only when the 
situation, and treat a horizontal gas cylinder fluid depths are infinite. During film boiling on 
in a large liquid bath, as suggested by Fig. lb. horizontal cylinders the depth of the vapor 
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blanket is finite, as was indicated in Fig. lb. (v) a non-Dimensions cylinder radius 

Recently, Hsieh [9] analyzed the inviscid in- 
stability problem in the presence of heat and R: = RJi& - P,)/+ (23) 

mass transfer. His analysis also incorporated a This number is related to the Bond number, 
finite depth of fluids. In the published discussion Bo, by Bo = R;? 
of his work as applied to film boiling, we showed Using these dimensionless numbers, we obtain 

that there was no effect of finite vapor depth on the desired dispersion relation from equation 
the ‘“most susceptible” wavelength, while the (17) in dimensionless form: 
effect on the corresponding frequency was to 
decrease it by only a very small amount. 

The evaluation of the determinant (16) gives 

2 + (P, + P,W 1 
K3 a2 4DK 

- g(p, - P$ -t ok3 - - (K2 + CM)‘5 - r(K2 + ah@ - MT 
c 

C/+(k + mf) + iL# + mB)1 
K 

= 0. (24) 

+ 4okCQ + ,y,mJ b& + ~pfl = 0. (17) 
+ 2Bo(K2 + GM)* 

Our next step is to put (17) in a more usable 
From (24) it is clear that when the wave growth 

form, so that it can be solved explicitly for 
rate is zero, there is no effect of ljquid viscosity 

frequency and wave number, or wavelength. 
on the critial wavelength. Furthermore, when 

The vapor viscosity yg is much less than pf so it 
M -+ co (i.e. the liquid is inviscid) equation (24) 

may be neglected m comparison to liquid 
reduces to Lienhard and Wong’s expression for 
the inviscid case. 

viscosity. Thus we may write, for the growth rate, 

w = f(pf + P,, pf - P,, ,y, 0; k, g,l$). ‘I% ex- 
We are interested in the “most susceptible 

pression relates eight quantities whtch are ex- 
frequency”, or the maximum growth rate, ud, 

pressible in three dimensions. Using the 
of the disturbance (i.e. the one for which 

Buckingham Pi-Theorem, we can recast this 
dSZ/dK = 0). Differentiating (24) with respect to 

problem in terms of five dimensionless groups. 
I( and setting dQ/dK = 0, gives a second equa- 

For these groups we choose: 
tion for the dimensionless maximum growth 

(i) a dimensionless growth rate or “frequency” 
rate, s2,. Thus we have two nonlinear equations, 
each in two unknowns: R and K, and Gd and 

Q = 4~is3(Pf - PJI’ (18) 

(ii) a dimensionless wave number 20r----- 
K = kC&(ps - P,)I+ (19) 

or a dimensionless wavelength, A, defined as 

n = lA(J3)K) (20) 

(iii) a dimensionless liquid viscosity parameter 

ME p.fot 
P,s*(P, - Py’ (21) 

The square of this group is very nearly the 
Bo~shanski number, N, which is well known in 
boiling. 

o.oo’a 

(iv) a dimensionless density Dimensionless wovelength, h 

r = fPf - P,MPf + PJ (22) FIG. 2. Effect of radius on dispersion relation for cylinders. 
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0 04 08 12 i6 20 24 28 32 36 
Dlmenslonless wavelength, A 

FIG. 3. Effect of viscosity on dispersion relation for a flat 
plate. 

K,. The two equations were solved numerically 
on an IBM/360 computer. 

For the physical cases that we shall consider 
subsequently, r is approximately, 0.9995, so we 
have used this value in the calculations. We 
might just as well have set r = 1, however, since 
r would have to be much farther from unity to 
alter the computations noticeably. 

Figures 2 and 3 show the effect of Bond 
number and liquid viscosity separately on the 
dispersion relation. Figure 2 shows that trans- 
verse curvature of the cylindrical heater reduces 
the “most susceptible” wavelength and increases 
the frequency “at a particular value of M. 

Figure 3 shows that apart from increasing the 
wavelength, viscosity also tends to increase the 
region of near-neutral stability slightly. By 
“region of near-neutral stability” we mean the 
range of wavelengths that can exist within any 
specified range of frequency close to the maxi- 
mum frequency. 

The “most susceptible frequency”, and corre- 
sponding wavelength are plotted in Figs. 4 and 
5, respectively, as a function of the viscosity 
parameter M and Bond number, Bo. As evident 
from these figures, the effect of liquid viscosity is 
to increase the wavelength and to decrease the 
corresponding frequency. 

EXPERIMENTAL DETERMINATION OF VAPOR 
BLANKET THICKNESS, WAVELENGTH, AND 

GROWTH RATE 

An experimental program was carried out to 
observe the wavelength, its rate of growth, and 
the thickness of the vapor blanket surrounding 
the wire heater during film boiling in viscous 
liquids. Since the viscosity of most of the liquids 
is fairly low when they boil at normal pres- 
sures, the experiments had to be performed at 
very low pressures to display significant 
viscous effects. Reagent-grade cyclohexanol, 
CH,(CH,),CHOOH, was well suited for the 
purpose and was used in nearly all the experi- 
ments reported here. Complete information 

2 
; 00 
.o 0.1 I.0 IO 100 1000 

2 

E 
Dimensionless liquid viscosity porometer, M 

.- 
0 

FIG. 4. Variation of 62, with M for various Bond numbers. 
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I.0 IO 100 

Dimensionless liquid viscosity porometer, M 

FIG. 5. Variation of Ad with M for various Bond numbers. 

regarding the relevant physical properties of 
cyclohexanol, as well as full details of the ex- 
periment are given by Dhir [lo]. 

The cylindrical test heaters were contained 
in an insulated brass test capsule, 8.9 x 8.9 x 17.8 
cm, with glass windows in the sides. An electric 
preheater and 063 cm dia brass holders to 
support the test heaters were fitted to the capsule. 
Nichrome wires were used as test heaters and 
connected to the holders through small copper 
leads attached so as to minimize end effects. A 
2.54 cm marker was mounted on the bottom of 
the capsule to provide a reference dimension for 
the reduction of photographic data. 

Figure 6 shows a schematic diagram of the 
apparatus. A.C. power was employed in most of 

the experiments. The power supply to the wire 
was calculated from the measured current and 
voltage in the wire. A mercury manometer or a 
vacuum gage was used to note pressure inside 
the capsule. This pressure was corrected to take 
into account the head of liquid above the wire. 
An identical apparatus was used by Lienhard 
and Sun to make similar measurements and they 
give full details of experimental procedure. 

Nichrome wires, about 10 cm long, were 
cleaned with soap and hot water to remove any 
grease or oily matter and then rinsed with the 
test liquid. The wire surfaces were smooth and 
had a cold-rolled finish. The capsule was filled 
with test liquid. to about 2.5 cm above the wire. 
The vacuum pump was started and the preheater 

Thermocouple type 
Q vacuum qoqe , Cock to 

One-way valve 3 @ 
control 

r----lArn 

Test 
-heater 

Auto- transformer 

FIG. 6. !khematic diagram of the apparatus. 
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was used to heat the liquid to saturation tem- 
perature. The preheater was turned off before 
energizing the wire to avoid effects of convective 
currents and electric fields. 

The current in the wire was steadily increased 
until the peak heat flux was reached and the 
transition from nucleate to film boiling was ob- 
served. Thereafter the current was reduced until 
film boiling started to disappear at the ends. 
This insured that the heat flux was close to 
minimum. Still pictures of the film boiling 
phenomenon were taken and observations of 
the liquid temperature and pressure were also 
made. 

This procedure was repeated for wires of 
different sizes and at various pressures. Each 
time a new wire was used, the liquid in the 
capsule was also replaced. In some cases high 
speed movies were made to facilitate study of the 
growth rate of the disturbance. 

Photographic information was used to make 
three different kinds of observations. 

~~eleng~~ measurements 
Wavelengths were scaled from the still photo- 

graphs. Care was taken to avoid situations 
where the merging of adjacent bubbles occur. A 
general deformation of the interface may be 
caused by the propagation of such disturbances 
along the wire, or local deformations may be 
caused by oscillations generated when outgoing 
bubbles separate from the interface. The prob- 
able error in the measurements of the shortest 
wavelengths was only about 14.5 per cent. 
The error was less for larger wavelengths. 

Vapor blanket thickness measurements 
In film boiling, a vapor blanket of finite 

thickness always surrounds the heater and 
there is no liquid contact with the surface of the 
heater. For the application of the theory devel- 
oped in the previous section, we must obtain 
the corrected radius of the heater wire by adding 
the minimum blanket thickness, d,, to R to get RC. 

To observe the vapor blanket thickness, 
representative pictures of film boiling were 

enlarged. The minimum diameter of the vapor 
blanket surrounding the wire was measured, 
using the 2.54 cm marker as a reference. The 
wire diameter was subtracted from this measure- 
ment to give twice the vapor blanket thickness. 

Measurements of growth rate qf disturbance 
Hycam movies were viewed on a microfilm 

viewer. Starting with a frame in which a bubble 
had just broken away from the interface, the 
height of the interface was measured from the 
lowest boundary of the vapor blanket. Some- 
times a cusp appeared on the blanket in the 
wake of a departing bubble, and we have ig- 
nored it. Later, the minimum diameter of the 
vapor blanket tube surrounding the wire was 
subtracted from each of the above observations 
to give the amplitude of the wave. 

The minimum height of the interface, d,, was 
used as a reference dimension for obtaining 
dimensionless amplitude. Thus, at a particular 
value of x, say x = 0, one may write 

z = exp (at) = exp(Qr “JCs%, - ~,)/~l f. 
% 

(25) 

but we can easily show that ,/[g3(p, - pg)/~] 
= 1*612u,, so 

In 3 = S2(1612w,Ft) 
0 4 

(26) 

where mdF is the “most susceptible” frequency 
(or growth rate) for the disturbance in the 
inviscid fluid in the absence of any curvature of 
the heater. In all cases the dimensionless ampli- 
tude was plotted against dimensionless time, 
OdFt, on semi-logarithmic graph paper. The 
slope of the curve at any instant gave the 
dimensionless frequency, a. The probable error 
in the observation of the linear growth rate was 
_t 10 per cent. 

Now we would like to compare the experi- 
mental observations of wavelength and fre- 
quency with the theoretical predictions. How- 
ever, before we can do this it is necessary to 
present some sort of correlation for vapor 
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blanket thickness, because the wire radius has 
to be corrected for it. 

VAPOR BLANKET THICKNJ.!SS CORRELATION 

Baumeister and Harnill [ 111, while analyzing 
heat transfer from wires in film boiling, developed 
an expression for vapor blanket thickness. Their 
theoretical model for the film boiling configura- 
tion was a fairly approximate one; a sequence of 
spherical domes connected by annular passages, 
Neglecting inertia, they solved the equations of 
motion and energy with the assumption that 
the heat-transfer rate is maximum. 

Their theoretical expressions for the vapor 
blanket thickness and the heat transfer coeficient 
can be combined to give 

C 1 + 1 + 9R”(l + d$R)2 11 - 1 (27) 

where q is the heat flux, h;R is the latent heat, gf,, 
multiplied by a sensible heat correction: 
[l $ 0.34 cVAT/h,J2, and c, is the specific heat 
at constant volume for the vapor. A comparison 
of (27) with existing $ data showed that the 
equation generally gives values that are too 
high. Therefore we sought to take a new look 
at the various factors in~uencing d,_ 

+ - 
a 

The vapor blanket thickness will primarily 
depend on seven additional independent vari- 

ables, 4, q~, h>B, s(p/ - p,), q, p and R. The heat 
flux, q, is Imagined to be tram&red by conduc- 
tion and used fully in the phase transfo~ation. 
The eight variables can be written in four 
dimensions. Thus, in accordance with Bucking- 
ham Pi-Theorem, we expect the problem to be 
reducible to a relation among four dimension- 
less groups. For these we choose: 

(i) The dimensionless vapor blanket thick- 

(ii) 
ness, A z dg/R 
The Bond number, Bo 

(iii) A ratio of viscous to surface tension forces, 

(iv) A ratio of inertial to viscous forces-a 
kind of Reynolds number based on the 
vapor velocity, 

Rt?EqRd. 129) 
%% B 

% 

Baumeister and Hamill’s equation involved 
the first three groups but the fourth group was 
missing because they neglected inertial terms in 
their equation of motion. Their assumption was 
realistic as long as either the wire radius, or the 
heat flux, or the vapor blanket thickness is 
small; but the ratio of inertial to viscous forces 

Data for Acetone 

0.4 - b 

FIG. 7. Correlation for vapor blanket thickness. 
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might be of the order of magnitude of unity 
when the heat flux is high or the vapor blanket 
thickness is large. 

In Fig. 7, we have plotted 20 data points for 
vapor blanket thickness on wires in the range 
0.11 < R’ < 0.65 during the film boiling of 
acetone and cyclohexanol. While the abscissa 
is the same as Baumeister and Hamill’s, the 
vapor blanket thickness has been correlated 
with the Reynolds number as an additional 
parameter. This correction has been obtained 
by a trial and error procedure and no theoretical 
reason is offered for taking the exponent in the 
inertia correction term to be 2/3. In forming the 
vapor blanket thickness correlation, all of the 
vapor properties have been evaluated at the 
mean film temperature and all radiant heat flux 
is assumed to generate vapor. The raw data are 
given by Dhir [lo]. 

The group, ~~~/~~~~~, varied approximately 
from O-2 to 25 in ail the observations. Smaller 
values of this group usually occur near the left 
hand side of the figure. The data scatter repre- 
sents minimum and maximum measurements of 
vapor blanket thickness. The accuracy of these 
measurements is & 10 per cent. The data are 
correlated well by the sohd line whose governing 
equation is : 

~OMPAR~ON OF WAVELENGTH PREDICTIONS 
WITH EXPERiMENT 

Observed wavelengths for cyclohexanol boil- 
ing at a temperature of 302YK, corresponding 
to a pressure of @296 kPa, are displayed in 
Fig. 8. The value of the liquid viscosity para- 
meter, M, is close to 5. The theoretical prediction 
for the viscous and inviscid cases is also shown 
in the figure. The wire radius has been corrected 
to Rc to take into account the thickness of the 
vapor blanket surrounding it. The raw wave- 
length data are given by Dhir. 

LPredicted h,for M=5 i 
! 

Dimensionless rodius, R’ 

FIG. 8. Wavelengths on horizontal cylinders. 

Although wavelengths were measured for 
various heat fluxes, those displayed in Fig. 8 
correspond to the lowest heat flux. This is done 
to avoid the longer wavelengths which may, as 
we wilf see shortly, be favored at higher heat 
fluxes. The data show a wide variability, but 
the lowest points in the range of the data scatter 
do embrace the theoretical prediction which 
takes the dominant wavelength to be the ‘“most 
susceptible” one. The inviscid predictions would 
have suggested wavelengths about 28 per cent 
too short. 

Figure 9 shows photographs of fitm boiling 
for two of the data points in Fig. 8. Although 
there is slight phase difference across the length 
of the wire, the Taylor wave is very well devel- 
oped. The bubble release pattern is good. The 

z I 

F n ?i 

c ipri a 1 
0 0.1 07 0.3 04 0.5 06 0.7 0 0 

FIG. 10. Wavelengths on horizontal cylinders. 



R'=0,23 Rcf =0,33 

H.M. 

e.0.34 s =0.43 

FIG. 9. Film boiling of cyclohexanol. M = 5.4. 
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process is slower and viscosity seems to have 
dampened the small interfacial disturbances 
which may be observed in less viscous liquids. 

Wavelength data for M = 16 are plotted in 
Fig. 10. Here the absolute pressure is 1.06 kPa 
and the saturation temperature is 329°K. In 
this case, observed wavelengths are higher and 
the data again show wide variability. This 
variability in data can be explained from the 
dispersion relation shown in Fig. 2. Near the 
maximum frequency there is a wide region of 
near-neutral stability. Thus, for frequencies 
slightly less than the maximum, a large range 
of wavelengths close to A, is possible. 

~,/A=078 atbubble 

= 0.08 at end of 

0 I.0 2.0 30 40 50 

Dimensionless time, f~,~ f .f 

FKG. 11. Growth of waves on a 051 mm dia wire heater in 
cyclohexanol. P - 1.06 k Pa, q = 0.86 X 10s W/m’,fs = 20 

bubble/s, ce+ = 45.5 Hz, R’ = 0.14, R’, = 0.22. 

COLUMN OF WAVE GROWTH RATE 
PREDICTIONS WITH EXPERIMRNT 

Figure 11 shows plots of dimensionless wave 
amplitude vs time on semi-logarithmic coordi- 
nates for a typical value of R’. The liquid viscosity 
parameter, M, is 16. The data are for two ran- 
domly-picky re~arly-young waves during 
5-10 s of motion pictures of film boiling. 

This figure and many others like it reveal that 

5.0 , , , , I I I I 1 I 1 I I 

19’=0~ll;ff,‘=0~185- 

0,x,0; Observations for three- 

x 
different woves. 

f “O 

Uncertainty is ~10% 
for Q ond 25% for A - 

E 
i5 OL , 1 I I I I I I I I I I 

G AC h, 05 IO I,5 

Dimensionless wavelength, A 

FIG. 12. Experimental veriticatioa of dispersion relation for 
cycIohexano1 at I.06 k Pa. q = 0.85 X I@ W/mz. 
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FIG. 13. Experimental verification of dispersion relation for 
cyclohexanol at 1 @i k Pa. q = 0.86 X 10s W/m*. 

an _ d 

0,O; Observotions for two 

I 
different waves. 
Uncertainty is =iO% 

I for fi and ~5% for A 

I I II I I I, I I t 1 

A, h, I.0 1.5 

Dimensionless wovelength, A 

FIG. 14. Experimental verification of dispersion relation for 
cyclohexanol at 1+6 k Pa. q = 1.01 X l@ W/m*. 
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FIG. 15. Experimental observation of frequency of dominant 
wavelength on cylinders. 

bubbles grow linearly during the first 12 per cent 
or so of growth. This is the period during which 
we would expect our linearized theoretical pre- 
dictions of the frequency to be valid. We note 
that the bubble grows in height to about 78 per 
cent of the wavelength before it leaves the inter- 
face. 

In Figs. 12-14, we trace the dispersion rela- 
tions for three dimensionless corrected radii 
and M = 16, and we display the experimental 
points obtained as in Fig. 11 on them. The 
relation between wavelength and frequency is 
borne out well in each case. It is clear that 
wavelengths with frequencies slightly less than 
the “most susceptible” frequency can easily 
occur. In Fig. 15, observed frequencies are plotted 
as a function of R: along with the viscous and 
inviscid (A4 -+ co) predictions. The data fall 

0.01 I I I I I I 
00 0. I 0.2 0.3 0.4 0.5 0.6 0.7 

Dimensionless corrected radius, R,’ 

FIG. 16. Experimental observation of frequency of dominant 
wavelength on cylinders. 

H. LIENHARD 

slightly below the viscous predictions, but the 
inviscid theory would have predicted still higher 
frequencies. 

The growth rates for some values of M in 
excess of 50 are compared with the inviscid limit 
in Fig. 16. The comparison is very satisfactory. 
That the growth rates do not exceed the maxi- 
mum possible value of Q is encouraging, since 
we have already seen that Q should be equal to 
or slightly less than its maximum value. 

CONCLUSIONS 

(A) Complete numerical evaluations of the 
dispersion relation have been made for both 
plane and cylindrical, Taylor-unstable inter- 
faces, considering both surface tension and fluid 
viscosity. 

(B) An increase of wavelength with the liquid 
viscosity has been measured and found to com- 
pare well with the theoretical predictions. How- 
ever, the dispersion relation permits some 
variability of the wavelength around the value 
for which the growth rate is maximum, with 
longer wavelengths favored. Thus some meas- 
ured wavelengths exceed the “most dangerous” 
one. 

(C) The wavelength and frequency (or growth 
rate) measurements are faithful to the predicted 
dispersion relation. 

(D) A correlation for the vapor blanket thick- 
ness around a cylindrical heater has been 
established. 
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STABILITE DE TAYLOR POUR DES FLUIDES VISQUEUK ET APPLICATION 
A L’EBULLITION EN FILM 

R&u&-On a t%lut nurn~~quern~t la relation de dispersion pour des ondes de Taylor a un interface 
visqueux instable avec tension superticielle. La solution tient compte de la courbure transversale et les 
evaluations numtriques s’appliquent aux interfaces aussi bien en forme de cylindre horizontal que de plan. 
Le resultat est vbrifit par des mesures de frequence et de longueur d’onde faites au tours de l’tbullition 
en film sur des fils horizontaux. On donne une relation empirique tres generale, pour l’epaisseur de la 

game de vapeur pendant l’tbullition en film. 

DIE TAYLOR-STABILITbiT VON ZIfHEN FLUSSIGKEITEN MIT ANWENDUNG AUF 
DAS FILMSIEDEN. 

Zusaumtenfasamg-Die Ausbreitungsbeziehung ftlr Taylor-We&m mit Oberflachenspannung an einer 
instabilen Grenzschicht wurde numerisch gel&t. Die Liisung beriicksichtigt eine Kribnmung in Querrich- 
tung und die numerischen Ergebnisse passen fiir horizontale, zylindrische, sowie fiir ebene Grenz&hen. 
Das Ergebnis wurde best&t&t mit Frequenz- und We~e~~ngenwe~en aus Filmsi~~~sun~ an 
horizontalen Drahten. Eiue sehr allgemeine empirische Beziehung wird angegeben zur Bestimmung der 

Dampfschichtdicke beim Filmsieden. 

TEHJIOPOBCKAfI YCTO~YMBOCTb HPH IIJIEHOYHOM KHHEHHR BFtBKMX 
~~~~OCTE~ 

AHE~T~~-II~OBOAIITCR uncner-rubrltt pacre~ ~cnepc~oHHoro COOTHOmeHMR Rnri Tetitao- 
pOBCKIiX BOJIH B HecTwWiapHO~ nn8HOfi IIOBepXHOCTH PaEQeJIa C IIoBepXHOCTHbm 

uaTnrKeurieM. Pemerrue yYmrbmaeT nonepevaym KpEiBIISHy, yI wvxeHKue oqemu ~0ryT 

EIClIOJIb80BE3TbCX aJIJ3 rOpH80HTaXbHbIX nHJInHApu%%KIlX H IIJlOCHnX nOBepXHOC’& pasA0Xa. 
PeeyJlbTaThl CpaBHMBaIoTCfi C UWfepeHHbDiH 8Ha4eHHIIMM YELCTOTP U AJIHH~I BOJIH~I npn 

meH0wioM KklneHmi Ha ropm30riraubnbrx npon0JroKax. IIpunORuT~ii necbwa o6mee ~M~HPH- 
Yewoe cooT~o~e~~e Axjra TOADY CHOn napa npu ~~eHoqH0~ rinueuuu. 


